3.2.13 \(\int \frac {x^4 (a+b \log (c x^n))^2}{(d+e x)^4} \, dx\) [113]

3.2.13.1 Optimal result
3.2.13.2 Mathematica [A] (verified)
3.2.13.3 Rubi [A] (verified)
3.2.13.4 Maple [C] (warning: unable to verify)
3.2.13.5 Fricas [F]
3.2.13.6 Sympy [F]
3.2.13.7 Maxima [F]
3.2.13.8 Giac [F]
3.2.13.9 Mupad [F(-1)]

3.2.13.1 Optimal result

Integrand size = 23, antiderivative size = 398 \[ \int \frac {x^4 \left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^4} \, dx=-\frac {2 a b n x}{e^4}+\frac {2 b^2 n^2 x}{e^4}-\frac {b^2 d^2 n^2}{3 e^5 (d+e x)}-\frac {b^2 d n^2 \log (x)}{3 e^5}-\frac {2 b^2 n x \log \left (c x^n\right )}{e^4}+\frac {b d^3 n \left (a+b \log \left (c x^n\right )\right )}{3 e^5 (d+e x)^2}+\frac {10 b d n x \left (a+b \log \left (c x^n\right )\right )}{3 e^4 (d+e x)}-\frac {5 d \left (a+b \log \left (c x^n\right )\right )^2}{3 e^5}+\frac {x \left (a+b \log \left (c x^n\right )\right )^2}{e^4}-\frac {d^4 \left (a+b \log \left (c x^n\right )\right )^2}{3 e^5 (d+e x)^3}+\frac {2 d^3 \left (a+b \log \left (c x^n\right )\right )^2}{e^5 (d+e x)^2}+\frac {6 d x \left (a+b \log \left (c x^n\right )\right )^2}{e^4 (d+e x)}-\frac {3 b^2 d n^2 \log (d+e x)}{e^5}-\frac {26 b d n \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {e x}{d}\right )}{3 e^5}-\frac {4 d \left (a+b \log \left (c x^n\right )\right )^2 \log \left (1+\frac {e x}{d}\right )}{e^5}-\frac {26 b^2 d n^2 \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right )}{3 e^5}-\frac {8 b d n \left (a+b \log \left (c x^n\right )\right ) \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right )}{e^5}+\frac {8 b^2 d n^2 \operatorname {PolyLog}\left (3,-\frac {e x}{d}\right )}{e^5} \]

output
-2*a*b*n*x/e^4+2*b^2*n^2*x/e^4-1/3*b^2*d^2*n^2/e^5/(e*x+d)-1/3*b^2*d*n^2*l 
n(x)/e^5-2*b^2*n*x*ln(c*x^n)/e^4+1/3*b*d^3*n*(a+b*ln(c*x^n))/e^5/(e*x+d)^2 
+10/3*b*d*n*x*(a+b*ln(c*x^n))/e^4/(e*x+d)-5/3*d*(a+b*ln(c*x^n))^2/e^5+x*(a 
+b*ln(c*x^n))^2/e^4-1/3*d^4*(a+b*ln(c*x^n))^2/e^5/(e*x+d)^3+2*d^3*(a+b*ln( 
c*x^n))^2/e^5/(e*x+d)^2+6*d*x*(a+b*ln(c*x^n))^2/e^4/(e*x+d)-3*b^2*d*n^2*ln 
(e*x+d)/e^5-26/3*b*d*n*(a+b*ln(c*x^n))*ln(1+e*x/d)/e^5-4*d*(a+b*ln(c*x^n)) 
^2*ln(1+e*x/d)/e^5-26/3*b^2*d*n^2*polylog(2,-e*x/d)/e^5-8*b*d*n*(a+b*ln(c* 
x^n))*polylog(2,-e*x/d)/e^5+8*b^2*d*n^2*polylog(3,-e*x/d)/e^5
 
3.2.13.2 Mathematica [A] (verified)

Time = 0.44 (sec) , antiderivative size = 344, normalized size of antiderivative = 0.86 \[ \int \frac {x^4 \left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^4} \, dx=-\frac {-\frac {b d^3 n \left (a+b \log \left (c x^n\right )\right )}{(d+e x)^2}+\frac {10 b d^2 n \left (a+b \log \left (c x^n\right )\right )}{d+e x}-13 d \left (a+b \log \left (c x^n\right )\right )^2-3 e x \left (a+b \log \left (c x^n\right )\right )^2+\frac {d^4 \left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^3}-\frac {6 d^3 \left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^2}+\frac {18 d^2 \left (a+b \log \left (c x^n\right )\right )^2}{d+e x}+6 b e n x \left (a-b n+b \log \left (c x^n\right )\right )-10 b^2 d n^2 (\log (x)-\log (d+e x))+\frac {b^2 d n^2 (d+(d+e x) \log (x)-(d+e x) \log (d+e x))}{d+e x}+26 b d n \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {e x}{d}\right )+12 d \left (a+b \log \left (c x^n\right )\right )^2 \log \left (1+\frac {e x}{d}\right )+26 b^2 d n^2 \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right )+24 b d n \left (a+b \log \left (c x^n\right )\right ) \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right )-24 b^2 d n^2 \operatorname {PolyLog}\left (3,-\frac {e x}{d}\right )}{3 e^5} \]

input
Integrate[(x^4*(a + b*Log[c*x^n])^2)/(d + e*x)^4,x]
 
output
-1/3*(-((b*d^3*n*(a + b*Log[c*x^n]))/(d + e*x)^2) + (10*b*d^2*n*(a + b*Log 
[c*x^n]))/(d + e*x) - 13*d*(a + b*Log[c*x^n])^2 - 3*e*x*(a + b*Log[c*x^n]) 
^2 + (d^4*(a + b*Log[c*x^n])^2)/(d + e*x)^3 - (6*d^3*(a + b*Log[c*x^n])^2) 
/(d + e*x)^2 + (18*d^2*(a + b*Log[c*x^n])^2)/(d + e*x) + 6*b*e*n*x*(a - b* 
n + b*Log[c*x^n]) - 10*b^2*d*n^2*(Log[x] - Log[d + e*x]) + (b^2*d*n^2*(d + 
 (d + e*x)*Log[x] - (d + e*x)*Log[d + e*x]))/(d + e*x) + 26*b*d*n*(a + b*L 
og[c*x^n])*Log[1 + (e*x)/d] + 12*d*(a + b*Log[c*x^n])^2*Log[1 + (e*x)/d] + 
 26*b^2*d*n^2*PolyLog[2, -((e*x)/d)] + 24*b*d*n*(a + b*Log[c*x^n])*PolyLog 
[2, -((e*x)/d)] - 24*b^2*d*n^2*PolyLog[3, -((e*x)/d)])/e^5
 
3.2.13.3 Rubi [A] (verified)

Time = 0.99 (sec) , antiderivative size = 430, normalized size of antiderivative = 1.08, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {2795, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4 \left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^4} \, dx\)

\(\Big \downarrow \) 2795

\(\displaystyle \int \left (\frac {d^4 \left (a+b \log \left (c x^n\right )\right )^2}{e^4 (d+e x)^4}-\frac {4 d^3 \left (a+b \log \left (c x^n\right )\right )^2}{e^4 (d+e x)^3}+\frac {6 d^2 \left (a+b \log \left (c x^n\right )\right )^2}{e^4 (d+e x)^2}-\frac {4 d \left (a+b \log \left (c x^n\right )\right )^2}{e^4 (d+e x)}+\frac {\left (a+b \log \left (c x^n\right )\right )^2}{e^4}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {d^4 \left (a+b \log \left (c x^n\right )\right )^2}{3 e^5 (d+e x)^3}+\frac {2 d^3 \left (a+b \log \left (c x^n\right )\right )^2}{e^5 (d+e x)^2}+\frac {b d^3 n \left (a+b \log \left (c x^n\right )\right )}{3 e^5 (d+e x)^2}-\frac {8 b d n \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right ) \left (a+b \log \left (c x^n\right )\right )}{e^5}+\frac {10 b d n \log \left (\frac {d}{e x}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{3 e^5}-\frac {4 d \log \left (\frac {e x}{d}+1\right ) \left (a+b \log \left (c x^n\right )\right )^2}{e^5}-\frac {12 b d n \log \left (\frac {e x}{d}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{e^5}+\frac {6 d x \left (a+b \log \left (c x^n\right )\right )^2}{e^4 (d+e x)}+\frac {10 b d n x \left (a+b \log \left (c x^n\right )\right )}{3 e^4 (d+e x)}+\frac {x \left (a+b \log \left (c x^n\right )\right )^2}{e^4}-\frac {2 a b n x}{e^4}-\frac {2 b^2 n x \log \left (c x^n\right )}{e^4}-\frac {b^2 d^2 n^2}{3 e^5 (d+e x)}-\frac {10 b^2 d n^2 \operatorname {PolyLog}\left (2,-\frac {d}{e x}\right )}{3 e^5}-\frac {12 b^2 d n^2 \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right )}{e^5}+\frac {8 b^2 d n^2 \operatorname {PolyLog}\left (3,-\frac {e x}{d}\right )}{e^5}-\frac {b^2 d n^2 \log (x)}{3 e^5}-\frac {3 b^2 d n^2 \log (d+e x)}{e^5}+\frac {2 b^2 n^2 x}{e^4}\)

input
Int[(x^4*(a + b*Log[c*x^n])^2)/(d + e*x)^4,x]
 
output
(-2*a*b*n*x)/e^4 + (2*b^2*n^2*x)/e^4 - (b^2*d^2*n^2)/(3*e^5*(d + e*x)) - ( 
b^2*d*n^2*Log[x])/(3*e^5) - (2*b^2*n*x*Log[c*x^n])/e^4 + (b*d^3*n*(a + b*L 
og[c*x^n]))/(3*e^5*(d + e*x)^2) + (10*b*d*n*x*(a + b*Log[c*x^n]))/(3*e^4*( 
d + e*x)) + (10*b*d*n*Log[1 + d/(e*x)]*(a + b*Log[c*x^n]))/(3*e^5) + (x*(a 
 + b*Log[c*x^n])^2)/e^4 - (d^4*(a + b*Log[c*x^n])^2)/(3*e^5*(d + e*x)^3) + 
 (2*d^3*(a + b*Log[c*x^n])^2)/(e^5*(d + e*x)^2) + (6*d*x*(a + b*Log[c*x^n] 
)^2)/(e^4*(d + e*x)) - (3*b^2*d*n^2*Log[d + e*x])/e^5 - (12*b*d*n*(a + b*L 
og[c*x^n])*Log[1 + (e*x)/d])/e^5 - (4*d*(a + b*Log[c*x^n])^2*Log[1 + (e*x) 
/d])/e^5 - (10*b^2*d*n^2*PolyLog[2, -(d/(e*x))])/(3*e^5) - (12*b^2*d*n^2*P 
olyLog[2, -((e*x)/d)])/e^5 - (8*b*d*n*(a + b*Log[c*x^n])*PolyLog[2, -((e*x 
)/d)])/e^5 + (8*b^2*d*n^2*PolyLog[3, -((e*x)/d)])/e^5
 

3.2.13.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2795
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + 
(e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = ExpandIntegrand[(a + b*Log[ 
c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b 
, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0 
] && IntegerQ[m] && IntegerQ[r]))
 
3.2.13.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.56 (sec) , antiderivative size = 943, normalized size of antiderivative = 2.37

method result size
risch \(\text {Expression too large to display}\) \(943\)

input
int(x^4*(a+b*ln(c*x^n))^2/(e*x+d)^4,x,method=_RETURNVERBOSE)
 
output
-6*b^2*ln(x^n)^2/e^5*d^2/(e*x+d)+2*b^2*ln(x^n)^2/e^5*d^3/(e*x+d)^2-2*b^2*n 
*ln(x^n)*x/e^4-13/3*b^2/e^5*n^2*d*ln(x)^2+26/3*b^2/e^5*n^2*dilog(-e*x/d)*d 
-1/3*b^2*ln(x^n)^2*d^4/e^5/(e*x+d)^3-4*b^2*ln(x^n)^2/e^5*d*ln(e*x+d)-8*b^2 
/e^5*d*n^2*ln(x)*polylog(2,-e*x/d)+1/3*b^2*n*ln(x^n)/e^5*d^3/(e*x+d)^2-26/ 
3*b^2*n*ln(x^n)/e^5*d*ln(e*x+d)-10/3*b^2*n*ln(x^n)/e^5*d^2/(e*x+d)+(-I*b*P 
i*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+I*b*Pi*csgn(I*c)*csgn(I*c*x^n)^2+I*b 
*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2-I*b*Pi*csgn(I*c*x^n)^3+2*b*ln(c)+2*a)*b*(l 
n(x^n)*x/e^4-1/3*ln(x^n)*d^4/e^5/(e*x+d)^3-4*ln(x^n)/e^5*d*ln(e*x+d)-6*ln( 
x^n)/e^5*d^2/(e*x+d)+2*ln(x^n)/e^5*d^3/(e*x+d)^2-1/3*n*(1/e^5*(3*e*x+3*d-1 
/2*d^3/(e*x+d)^2+13*d*ln(e*x+d)+5*d^2/(e*x+d)-13*d*ln(e*x))-12/e^5*d*(dilo 
g(-e*x/d)+ln(e*x+d)*ln(-e*x/d))))-1/3*b^2*d^2*n^2/e^5/(e*x+d)+3*b^2*d*n^2* 
ln(x)/e^5-3*b^2*d*n^2*ln(e*x+d)/e^5+8*b^2*d*n^2*polylog(3,-e*x/d)/e^5+1/4* 
(-I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+I*b*Pi*csgn(I*c)*csgn(I*c*x^n 
)^2+I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2-I*b*Pi*csgn(I*c*x^n)^3+2*b*ln(c)+2* 
a)^2*(x/e^4-1/3/e^5*d^4/(e*x+d)^3-4/e^5*d*ln(e*x+d)-6/e^5*d^2/(e*x+d)+2/e^ 
5*d^3/(e*x+d)^2)+b^2*ln(x^n)^2*x/e^4+26/3*b^2*n/e^5*ln(x)*ln(x^n)*d+26/3*b 
^2/e^5*n^2*ln(e*x+d)*ln(-e*x/d)*d-8*b^2/e^5*d*ln(x)*dilog(-e*x/d)*n^2+8*b^ 
2*n/e^5*d*ln(x^n)*dilog(-e*x/d)+4*b^2/e^5*d*n^2*ln(e*x+d)*ln(x)^2-4*b^2/e^ 
5*d*n^2*ln(x)^2*ln(1+e*x/d)-8*b^2/e^5*d*ln(x)*ln(e*x+d)*ln(-e*x/d)*n^2+8*b 
^2*n/e^5*d*ln(x^n)*ln(e*x+d)*ln(-e*x/d)+2*b^2*n^2*x/e^4
 
3.2.13.5 Fricas [F]

\[ \int \frac {x^4 \left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^4} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )}^{2} x^{4}}{{\left (e x + d\right )}^{4}} \,d x } \]

input
integrate(x^4*(a+b*log(c*x^n))^2/(e*x+d)^4,x, algorithm="fricas")
 
output
integral((b^2*x^4*log(c*x^n)^2 + 2*a*b*x^4*log(c*x^n) + a^2*x^4)/(e^4*x^4 
+ 4*d*e^3*x^3 + 6*d^2*e^2*x^2 + 4*d^3*e*x + d^4), x)
 
3.2.13.6 Sympy [F]

\[ \int \frac {x^4 \left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^4} \, dx=\int \frac {x^{4} \left (a + b \log {\left (c x^{n} \right )}\right )^{2}}{\left (d + e x\right )^{4}}\, dx \]

input
integrate(x**4*(a+b*ln(c*x**n))**2/(e*x+d)**4,x)
 
output
Integral(x**4*(a + b*log(c*x**n))**2/(d + e*x)**4, x)
 
3.2.13.7 Maxima [F]

\[ \int \frac {x^4 \left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^4} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )}^{2} x^{4}}{{\left (e x + d\right )}^{4}} \,d x } \]

input
integrate(x^4*(a+b*log(c*x^n))^2/(e*x+d)^4,x, algorithm="maxima")
 
output
-1/3*a^2*((18*d^2*e^2*x^2 + 30*d^3*e*x + 13*d^4)/(e^8*x^3 + 3*d*e^7*x^2 + 
3*d^2*e^6*x + d^3*e^5) - 3*x/e^4 + 12*d*log(e*x + d)/e^5) + integrate((b^2 
*x^4*log(x^n)^2 + 2*(b^2*log(c) + a*b)*x^4*log(x^n) + (b^2*log(c)^2 + 2*a* 
b*log(c))*x^4)/(e^4*x^4 + 4*d*e^3*x^3 + 6*d^2*e^2*x^2 + 4*d^3*e*x + d^4), 
x)
 
3.2.13.8 Giac [F]

\[ \int \frac {x^4 \left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^4} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )}^{2} x^{4}}{{\left (e x + d\right )}^{4}} \,d x } \]

input
integrate(x^4*(a+b*log(c*x^n))^2/(e*x+d)^4,x, algorithm="giac")
 
output
integrate((b*log(c*x^n) + a)^2*x^4/(e*x + d)^4, x)
 
3.2.13.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^4 \left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^4} \, dx=\int \frac {x^4\,{\left (a+b\,\ln \left (c\,x^n\right )\right )}^2}{{\left (d+e\,x\right )}^4} \,d x \]

input
int((x^4*(a + b*log(c*x^n))^2)/(d + e*x)^4,x)
 
output
int((x^4*(a + b*log(c*x^n))^2)/(d + e*x)^4, x)